首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233117篇
  免费   7802篇
  国内免费   4066篇
化学   132641篇
晶体学   2865篇
力学   10058篇
综合类   252篇
数学   23319篇
物理学   75850篇
  2021年   2500篇
  2020年   3125篇
  2019年   3191篇
  2018年   3344篇
  2017年   3373篇
  2016年   5063篇
  2015年   3735篇
  2014年   5466篇
  2013年   11540篇
  2012年   9649篇
  2011年   11158篇
  2010年   7834篇
  2009年   7659篇
  2008年   9304篇
  2007年   8981篇
  2006年   8479篇
  2005年   7540篇
  2004年   6785篇
  2003年   6055篇
  2002年   5400篇
  2001年   6589篇
  2000年   4978篇
  1999年   3993篇
  1998年   3159篇
  1997年   3104篇
  1996年   3061篇
  1995年   2949篇
  1994年   2800篇
  1993年   2568篇
  1992年   3175篇
  1991年   3001篇
  1990年   2920篇
  1989年   2830篇
  1988年   2853篇
  1987年   2842篇
  1986年   2634篇
  1985年   3383篇
  1984年   3365篇
  1983年   2630篇
  1982年   2710篇
  1981年   2756篇
  1980年   2521篇
  1979年   2847篇
  1978年   2841篇
  1977年   2962篇
  1976年   2807篇
  1975年   2560篇
  1974年   2495篇
  1973年   2454篇
  1968年   1702篇
排序方式: 共有10000条查询结果,搜索用时 33 毫秒
991.
We describe here a near infrared light-responsive elastin-like peptide (ELP)-based targeted nanoparticle (NP) that can rapidly switch its size from 120 to 25 nm upon photo-irradiation. Interestingly, the targeting function, which is crucial for effective cargo delivery, is preserved after transformation. The NPs are assembled from (targeted) diblock ELP micelles encapsulating photosensitizer TT1-monoblock ELP conjugates. Methionine residues in this monoblock are photo-oxidized by singlet oxygen generated from TT1, turning the ELPs hydrophilic and thus trigger NP dissociation. Phenylalanine residues from the diblocks then interact with TT1 via π-π stacking, inducing the re-formation of smaller NPs. Due to their small size and targeting function, the NPs penetrate deeper in spheroids and kill cancer cells more efficiently compared to the larger ones. This work could contribute to the design of “smart” nanomedicines with deeper penetration capacity for effective anticancer therapies.  相似文献   
992.
1,3-Difunctionalized cyclobutanes are an emerging scaffold in medicinal chemistry that can confer beneficial pharmacological properties to small-molecule drug candidates. However, the diastereocontrolled synthesis of these compounds typically requires complicated synthetic routes, indicating a need for novel methods. Here, we report a sequential C−H/C−C functionalization strategy for the stereospecific synthesis of cis-γ-functionalized cyclobutyl ketones from readily available cyclobutyl aryl ketones. Specifically, a bicyclo[1.1.1]pentan-2-ol intermediate is generated from the parent cyclobutyl ketone via an optimized Norrish-Yang procedure. This intermediate then undergoes a ligand-enabled, palladium-catalyzed C−C cleavage/functionalization to produce valuable cis-γ-(hetero)arylated, alkenylated, and alkynylated cyclobutyl aryl ketones, the benzoyl moiety of which can subsequently be converted to a wide range of functional groups including amides and esters.  相似文献   
993.
994.
Metal-organic frameworks (MOFs) are a class of porous materials with high surface areas, which are acquiring rapid attention on an exponential basis. A significant characteristic of MOFs is their ability to act as adsorbents to selectively separate component mixtures of similar size, thereby addressing the technological need for an alternative approach to conventional distillation methods. Recently, MOFs comprising a 3-Dimensional (3D) linker have shown outstanding capabilities for difficult separations compared to the parent 2-Dimensional (2D) analogue. 3D-linkers with a polycyclic core are underrepresented in the MOF database due to the widespread preferred use of 2D-linkers and the misconceived high-cost of 3D linkers. We summarize the recent research of 3D-linker MOFs and highlight their beneficial employment for selective gas and hydrocarbon adsorption and separation. Furthermore, we outline forecasts in this area to create a platform for widespread adoption of 3D-linkers in MOF synthesis.  相似文献   
995.
The corrosion, parasitic reactions, and aggravated dendrite growth severely restrict development of aqueous Zn metal batteries. Here, we report a novel strategy to break the hydrogen bond network between water molecules and construct the Zn(TFSI)2-sulfolane-H2O deep eutectic solvents. This strategy cuts off the transfer of protons/hydroxides and inhibits the activity of H2O, as reflected in a much lower freezing point (<−80 °C), a significantly larger electrochemical stable window (>3 V), and suppressed evaporative water from electrolytes. Stable Zn plating/stripping for over 9600 h was obtained. Based on experimental characterizations and theoretical simulations, it has been proved that sulfolane can effectively regulate solvation shell and simultaneously build the multifunctional Zn-electrolyte interface. Moreover, the multi-layer homemade modular cell and 1.32 Ah pouch cell further confirm its prospect for practical application.  相似文献   
996.
Site-selective transformations of densely functionalized scaffolds have been a topic of intense interest in chemical synthesis. Herein we have repurposed the rarely used Cornforth rearrangement as a tool to effect a single-atom ring contraction in cyclic peptide backbones. Investigations into the kinetics of the rearrangement were carried out to understand the impact of electronic factors, ring size, and linker type on the reaction efficiency. Conformational analysis was undertaken and showed how subtle differences in the peptide backbone result in substrate-dependent reaction profiles. This methodology can now be used to perform conformation-activity studies. The chemistry also offers an opportunity to install building blocks that are not compatible with traditional C-to-N iterative synthesis of macrocycle precursors.  相似文献   
997.
Rational design of polymer structures at the molecular level promotes the iteration of high-performance photocatalyst for sustainable photocatalytic hydrogen peroxide (H2O2) production from oxygen and water, which also lays the basis for revealing the reaction mechanism. Here we report a benzoxazine-based m-aminophenol-formaldehyde resin (APFac) polymerized at ambient conditions, exhibiting superior H2O2 yield and long-term stability to most polymeric photocatalysts. Benzoxazine structure was identified as the crucial photocatalytic active segment in APFac. Favorable adsorption of oxygen/intermediates on benzoxazine structure and commendable product selectivity accelerated the reaction kinetically in stepwise single-electron oxygen reduction reaction. The proposed benzoxazine-based phenolic resin provides the possibility of production in batches and industrial application, and sheds light on the de novo design and analysis of metal-free polymeric photocatalysts.  相似文献   
998.
Homologation of trisubstituted fluoroalkenes followed by allylboration of aldehyde, ketone and imine substrates is suitable for synthesis of β-fluorohydrin and amine products. In the presence of (R)-iodo-BINOL catalyst enantioselectivities up to 99 % can be achieved by formation of a single stereoisomer with adjacent stereocenters, of which one is a tertiary C−F center.  相似文献   
999.
Aqueous redox flow batteries (ARFBs) are a promising technology for grid-scale energy storage, however, their commercial success relies on redox-active materials (RAM) with high electron storage capacity and cost competitiveness. Herein, a redox-active material lithium ferrocyanide (Li4[Fe(CN)6]) is designed. Li+ ions not only greatly boost the solubility of [Fe(CN)6]4− to 2.32 M at room temperature due to weak intermolecular interactions, but also improves the electrochemical performance of [Fe(CN)6]4−/3−. By coupling with Zn, ZIRFBs were built, and the capacity of the batteries was as high as 61.64 Ah L−1 (pH-neutral) and 56.28 Ah L−1 (alkaline) at a [Fe(CN)6]4− concentration of 2.30 M and 2.10 M. These represent unprecedentedly high [Fe(CN)6]4− concentrations and battery energy densities reported to date. Moreover, benefiting from the low cost of Li4[Fe(CN)6], the overall chemical cost of alkaline ZIRFB is as low as $11 per kWh, which is one-twentieth that of the state-of-the-art VFB ($211.54 per kWh). This work breaks through the limitations of traditional electrolyte composition optimization and will strongly promote the development of economical [Fe(CN)6]4−/3−-based RFBs in the future.  相似文献   
1000.
Halide double perovskites [A2MIMIIIX6] are an important class of materials that have garnered substantial interest as non-toxic alternatives to conventional lead iodide perovskites for optoelectronic applications. While numerous studies have examined chloride and bromide double perovskites, reports of iodide double perovskites are rare, and their definitive structural characterization has not been reported. Predictive models have aided us here in the synthesis and characterization of five iodide double perovskites of general formula Cs2NaLnI6 (Ln=Ce, Nd, Gd, Tb, Dy). The complete crystal structures, structural phase transitions, optical, photoluminescent, and magnetic properties of these compounds are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号